Mapping the seafloor: the "uncharted" world

Oceans of Opportunities, River of Ideas (OORI)

5th -9th December 2018

Gent, Belgium

SOUTH

MERICA

Amon K. Kimeli

akimeli@kmfri.co.ke

"Trust in God and the Bathymetry"

What is Bathymetry?

- Measure of depth of the water column relative to sea level.
- Several bathymetry measurements are used to visualize the topography of sea floor
- Bathymetry measurements can be obtained by:
 - Lead lines
 - Singlebeam echosounding
 - Multibeam echosounding (high resolution –full seafloor coverage)
 - LiDAR
 - Satellite altimetry
- Hydrography is the branch of science that deals with measuring bathymetry

Why do we need bathymetry?

One of the basemap required for all academic, commercial & exploration work at sea and has numerous applications:

- **Safety of Navigation:** maritime trade, military + coast guard
- Scientific and academic research: marine geology, global tectonics, ocean current models
- Geohazard modelling and mitigation: Tsunami-propagation and storm surge models
- Sustainable resource management: fisheries-resource management, mariculture, petroleum and mineral exploration, renewable energy resources (wind farms)
- Environmental Stewardship: Habitat monitoring, national heritage
- Marine based engineering/construction: Harbor & docks construction & maintenance

Why do we need bathymetry?

One of the basemap required for all academic, commercial & exploration work and has numerous applications:

- Safety of Navigation:
 - maritime trade
 - military + coast guard
- Scientific and academic research:
 - marine geology
 - global tectonics
 - ocean current models
- Geohazard modelling and mitigation:
 - Tsunami-propagation and storm surge models
- Sustainable Resource Management:
 - fisheries-resource management,
 - mariculture
 - petroleum and mineral exploration
 - renewable energy resources (wind farms)
- Environmental Stewardship: Habitat monitoring, national heritage

Status: How much of the World Ocean floor is mapped?

Quick FACTS

• \sim 70% of the Earth is covered by the World Ocean.

Systematic acquisition of deep ocean (>200m) bathymetric data began in (1872–1876) →British HMS Challenger expedition generating 492 deep-sea soundings

- Sea bottom topography
 - →far less known than the surfaces of Mercury, Venus, Mars, and the moon.

Photo source: Seabed 2030 Roadmap; originally in C&GS Season's Report Karo 1936–88. Provided from NOAA's Historic Coast & Geodetic Survey

Status: How much of the World Ocean floor is mapped?

Very low resolution → single beam and ship track data used.

- Satellite altimetry (Sandwell et al., 2014; Smith and Sandwell, 1997)
 - Global ocean 5km \times 5km grid

 Only ~15% of worlds deep ocean is mapped to required standards (MBES=full sea floor coverage)

Closer home: Indian Ocean

Only 2% of Indian Ocean covered by publicallyavailable MBES data.

It could change if all available bathymetry data was shared.

Source: Wigley, 2018

Much closer home: Kenya

- MBES survey was done in 2007 under Kenya's UNCLOS project to delineate its outer continental shelf.
- Support Kenya's submission to UNCLOS for extension of it's EEZ.

HOWEVER, most of our Kenyan territorial "shallow" waters remains unsurveyed.

Seamounts/Guyots in Kenya waters

Images: Kimeli, 2015

Nippon Foundation – GEBCO Seabed 2030 Project

Seabed 2030 is a global initiative to cooperatively work toward creating a high resolution complete map of the world's ocean floor by 2030.

-The **Nippon Foundation** is a private Japanese-based, non-profit <u>grant-making organization</u> with a mission based around philanthropic activities to pursue global <u>maritime development</u> and assistance for <u>humanitarian work</u>.

-The **General Bathymetric Chart of the Oceans (GEBCO)** organization operates under the joint auspices of the <u>International Hydrographic Organization</u> (IHO) and the <u>Intergovernmental Oceanographic Commission</u> (IOC) of UNESCO

Seabed 2030 Mission

"Empower the world to **make policy decisions, use the ocean sustainably**, and **undertake scientific research** that is informed by a detailed understanding of the global ocean floor".

Supports SDG 14 and coincides with UN Decade of Ocean Science for Sustainable Development

Seabed 2030 Project (<u>https://seabed2030.gebco.net/</u>)

- Initiated in 2016 during the Forum for Future Ocean Floor Mapping (FFOFM) in Monaco.
- Clearly set long-term AMBITIOUS goal:

" To see 100% of the World Ocean floor topography mapped by 2030 so that: No features of the accessible parts of the World Ocean floor larger than 100m remains to be portrayed ".

- Target is to map world ocean at 100m resolution.
- Seabed 2030 will compile all available and newly collected bathymetric data into a high resolution, high-quality digital model of the World Ocean floor.

Seabed 2030 structure

Survey efforts needed to map the world's ocean floor

Water depth interval (modal water depth)	Average water depth (km)	Proportion of water depth (%)	Proportion of uncharted surface – this interval	Proportion of uncharted surface (overall ocean)	Cumulated surface of the GEBCO 2014 grid nodes originating from interpolated driven by altimetry (km2)	Remaining effort (years) (for one survey boat)
>3000	4	75.3	85	69	230,910,385	188
3000-1000	1.5	13.0	72	15	34,143,193	74
1000-200	0.4	4.4	66	7	10,654,693	86
0-200	0.1	7.3	71	9	18,995,603	619

- ~970 years would be required to survey the area of the GEBCO_2014 grid today unconstrained by any sounding.
- Of these ~620 years consist of the shallow areas between 0–200m water depths.

Seabed 2030 Regional Data Centers

The World Ocean divided into four regions, each falling under the responsibility of a RDACC. This division is based on ongoing activities within GEBCO and to keep the number of RDACCs on a fundable level. Source: Seabed 2030 Roadmap

Seabed 2030 Regional Data Centers

The Seabed 2030 Project builds on the more than century-long legacy of GEBCO and the investment in human capacity built by the GEBCO-Nippon Foundation training program over the past decade.

RTH

TLANTIC

Human Capacity-building: Nippon Foundation / GEBCO training program: 2004 -

>90 students and alumni from 40 coastal states over last 15 years (current class in red)

Take home message: Seabed 2030 is a global call to action

- Share existing data
- Work together to coordinate acquisition of new data
- Make use of crowd-sourcing
- Develop new technical and human capacity to confront this global challenge

https://seabed2030.gebco.net

Questions?

akimeli@kmfri.co.ke